
Binomial distribution

k = number of independent slots
p = probability for one particle to be detected in one measurement slot 

Mean number of detected particles : .n k p
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Probability to have n particles detected in the n first slots and no particule detected in the k-n final slots: 
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Probability to have n particles detected in the k slots (independant of the order):
(combination of n particules in k slots)
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Consider k measurement slots, the probability to detect a particule in a slot is p

 Binomial distribution



Poisson distribution

We use the limits:
(Poisson distribution) 

( ) lim ( )
k
p n k

P n B n





     .( 1)...( 1) 1 ( 1) ( 1) 1( ) lim 1 lim ... 1
! ! (1 )

k n n kn
nk k

p n k p n k

k k k n k k k nP n p p kp p
n n k k k p



 
 

     
       



1 1 1 1

 1/1 1( ) lim 1
! !

nn np n

k
p n k

P n n p n e
n n






        

e-1

Poisson distribution

- The number k of particules tends to infinity
- The probability p tends to zero
- The mean number detected is k.p



Poisson distribution

Mean value

Variance
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Quadratic moment


